
HUMANDATA

Spartan-3A ブレッドボード (セミカードサイズ) XCM-304-200A ユーザーズマニュアル 初版

目次

はじめに	1
ご注意	1
1. 製品の内容について	2
2. 仕様	2
3. 製品説明	3
3.1. 各部の名称	3
3.2. ブロック図	
3.3. 開発環境	4
3.4. 電源入力	
3.5. JTAG コネクタ	4
4. FPGA ピン割付表	5
4.1. CNA	5
4.2. CNB	6
4.3. CLK	
5. ディップスイッチの説明	7
6. FPGA へのコンフィギュレーション	8
6.1. ディップスイッチ(SW1)の設定	8
7. SPI-PROM への書き込み	9
7.1. MCS データ作成方法	
7.2. ディップスイッチ(SW1)設定	12
7.3. SPI-PROM へのデータ書き込み方法	
7.4. SPI-PROM からコンフィギュレーション	
7.5. SPI-PROM データの消去方法	15
8. Configuration Rate の設定	16
9. XCM-304 参考資料について	17
10. 付属資料	17

はじめに

この度は、Spartan-3Aブレッドボード/XCM-304-200Aをお買い上げいただきまして誠にありがとうございます。

XCM-304 は、XILINX の高性能 FPGA Spartan-3A を用いた評価用ボードで、電源回路、クロック回路、コンフィギュレーション回路などを装備した、使いやすいボードになっています。どうぞご活用ください。

ご注意

- 1 本製品には、民生用の一般電子部品が使用されています。 宇宙、航空、医療、原子力等、各種安全装置など人命、事故にかかわる 特別な品質、信頼性が要求される用途でのご使用はご遠慮ください。
- 2 水中、高湿度の場所での使用はご遠慮ください。
- 3 腐食性ガス、可燃性ガス等引火性のガスのあるところでの 使用はご遠慮ください。
- 4 基板表面に他の金属が接触した状態で電源を入れないでください。
- 5 定格を越える電源を加えないでください。

- 6 本書の内容は、改良のため将来予告なしに変更することがありますので、ご了 承願います。
- 7 本書の内容については万全の記して作成しましたが、万一誤りなど、お気づき の点がございましたら、ご連絡をお願いいたします。
- 8 本製品の運用の結果につきましては、7. 項にかかわらず当社は責任を負いか ねますので、ご了承願います。
- 9 本書に記載されている使用と異なる使用をされ、あるいは本書に記載されてい ない使用をされた場合の結果については、当社は責任を負いません。
- 10 本書および、回路図、サンプル回路などを無断で複写、引用、配布することはお 断りいたします。
- 11 発煙や発火、異常な発熱があった場合はすぐに電源を切ってください。
- 12 ノイズの多い環境での動作は保障しかねますのでご了承ください。
- 13 静電気にご注意ください。

1. 製品の内容について

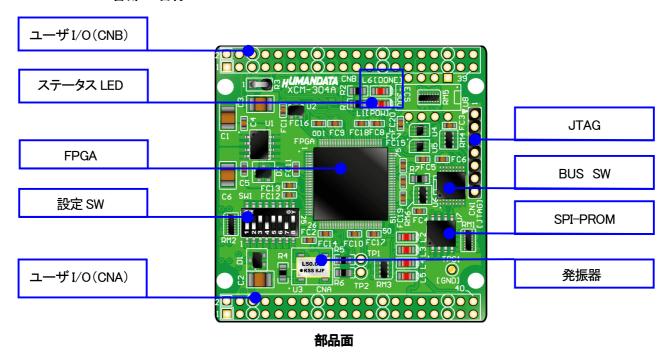
本パッケージには、以下のものが含まれています。万一、不足などがございましたら、弊 社宛にご連絡ください。

FPGA ブレッドボード XCM-304-200A1付属品1マニュアル(本書)1 *ユーザ登録はがき1 *

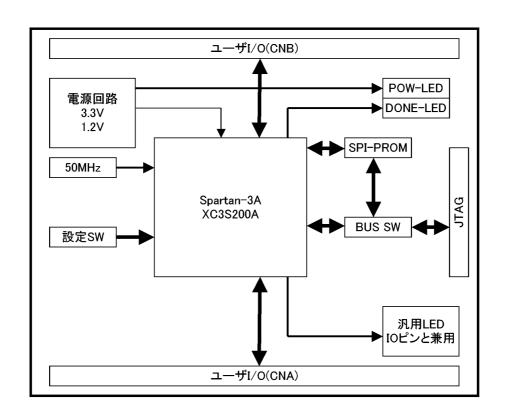
2. 仕様

製品型番	XCM-304-200A
搭載 FPGA	XC3S200A-4VQG100C
電源	DC 3.3V
消費電流	N/A (詳細は FPGA データシートご参照)
外形寸法	54 × 53 [mm]
質量	約 15 [g]
ユーザーI/O	54 本(IP ピン含む)
I/O コネクタ	40 ピンスルーホール 0.9[mm φ]x2 組 2.54mm ピッチ
プリント基板	ガラスエポキシ 4 層基板 1.6t
クロック	オンボード 50MHz
コンフィギュレーション用リセット回路	内蔵 (240ms TYP)
JTAG コネクタ	DIP7 ピン ピンヘッダ 2.54mm ピッチ
ステータス LED	2個(POWER-LED , DONE-LED)
付属品	SIP7ピンヘッダ(本体に取付け済み) 1個 *
1.7 小型日日	DIP40 ピンヘッダ 2 個 *

2


* 互換品と変更になる場合がございます

^{*} オーダー毎に各1部の場合があります。(ご要望により追加請求できます)



3. 製品説明

3.1. 各部の名称

3.2. ブロック図

3.3. 開発環境

FPGAの内部回路設計には、回路図エディタやHDL入力ツール、論理合成ツールが必要です。これらの開発ツールは、XILINX社が無償配布するISEにて可能です。使用する際には、インターネットによるライセンス登録が必要となります。

3.4. 電源入力

本ボードは、DC 3.3V単一電源で動作します。

内部で必要な、1.2V はオンボードのレギュレータにより生成されます。

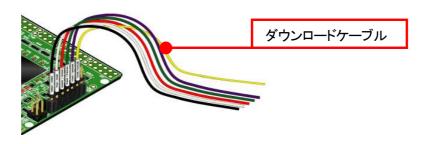
外部から供給する 3.3V 電源は充分安定して、充分な余裕のあるものをご用意ください。 電源は、CNA、CNB から供給してください。 適切な電源を供給してください。

いずれも 3.3V を超えることはできません。

詳しくは FPGA のデータシート、回路図などを参照してください。また電源の立ち上がりは単調増加である必要があります。良質の電源を使用するようにしてください。

3.5. JTAG コネクタ

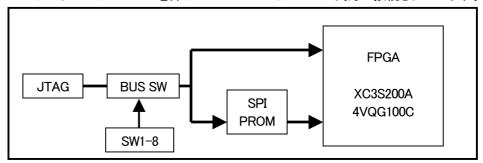
FPGA へのコンフィギュレーションや SPI-PROM への ISP に用います。 ピン配置は次表のとおりです



信号名	方向	ピン番号
GND	I/O	1
TCK	IN	2
TDO	OUT	3
TMS	IN	4
VCC(3.3V)	OUT(POW)	5
TDI	IN	6
GND	I/O	7

弊社製ダウンロードケーブル XC2、XC3、XCKIT や XILINX 社の純正ケーブルなどを用いることができます。

また、ダウンロードケーブルと XCM-108 との接続には付属品 SIP7 ピンヘッダをご利用できます。


使用例

<u> ダウンロードケーブルを接続する場合、誤差しなどにご注意ください</u>

JTAG チェインには BUS SW を介して SPI-PROM と FPGA の両方に接続されています。

4. FPGA ピン割付表

4.1. CNA

備考	BANK	NET LABEL	FPGA ピン#		クタピ #	FPGA ピン#	NET LABEL	BANK	備考
		V33_A	3.3V	1	2	3.3V	V33_A		
		電源予約	電源予約	3	4	電源予約	電源予約		
		GND	GND	5	6	GND	GND		
	Α	IOA0	3	7	8	4	IOA1	Α	
	Α	IOA2	5	9	10	6	IOA3	Α	
	Α	IOA4	9	11	12	10	IOA5	Α	
	Α	IOA6	12	13	14	13	IOA7	Α	
		GND	GND	15	16	GND	GND		
	Α	IOA8	15	17	18	16	IOA9	Α	
	Α	IOA10	19	19	20	20	IOA11	Α	
	Α	IOA12	28	21	22	32	IOA13	Α	
	Α	IOA14	33	23	24	34	IOA15	Α	
		GND	GND	25	26	GND	GND		
	Α	IOA16	35	27	28	36	IOA17	Α	
	Α	IOA18	37	29	30	40	IOA19	Α	
	Α	IOA20	41	31	32	49	IOA21	Α	
	Α	IOA22	50	33	34	52	IOA23	Α	
		GND	GND	35	36	GND	GND		
L5と兼用	Α	IOA24	56	37	38	57	IOA25	Α	L4と兼用
L3と兼用	Α	IOA26	59	39	40	60	IOA27	Α	L2と兼用

%L2-L5 : LED

4.2. CNB

備考	BANK	NET LABEL	FPGA ピン#		ウタピ #	FPGA ピン#	NET LABEL	BANK	備考
		V33_B	3.3V	1	2	3.3V	V33_B		
		電源予約	電源予約	3	4	電源予約	電源予約		
		GND	GND	5	6	GND	GND		
	В	IOB0	98	7	8	94	IOB1	В	
	В	IOB2	93	9	10	90	IOB3	В	
	В	IOB4	89	11	12	88	IOB5	В	
	В	IOB6	86	13	14	85	IOB7	В	
		GND	GND	15	16	GND	GND		
	В	IOB8	84	17	18	83	IOB9	В	
	В	IOB10	78	19	20	77	IOB11	В	
	Α	IOB12	73	21	22	72	IOB13	Α	
	Α	IOB14	71	23	24	70	IOB15	Α	
		GND	GND	25	26	GND	GND		
	Α	IOB16	65	27	28	64	IOB17	Α	
	Α	IOB18	62	29	30	61	IOB19	Α	
	Α	IOB20	7	31	32	97	IOB21	В	
	В	IOB22	82	33	34	21	IOB23	Α	
		GND	GND	35	36	GND	GND	Α	
	Α	IOB24	39	37	38	68	IOB25	Α	
				39	40				

IPピンに割り付け(入力専用)

4.3. CLK

CLK	NET LABEL	FPGA ピン#
50MHz	CLK0	43
50MHz	CLK1	44

5. ディップスイッチの説明

XCM-304 のディップスイッチ(SW1)は以下のように割り付けられています。 SW ϵ ON ϵ Low に固定されます。

番号	S1	S2	S3	S4	S5	S6	S7	S8
記号	PSW1	X_M0	X_M1	X_M2	VS2	VS1	VS0	X_PROG
出荷時	OFF	OFF	OFF	OFF	OFF	OFF	OFF	ON
説明	汎用 SW		モードセレクトピ	<u></u>	SPI コン	フィギュレーショ	ンモード	SUSPEND モード設定

		内部マスタ SPI	マスタシリアル	マスタ SPI	マスタ BPIUP	JTAG
I	M[20]モードピンの設定	<0:1:1>	<0:0:0>	<0:0:1>	<0:1:0>	<1:0:1>

S1: PUDC_B

S2、S3、S4: モードセレクトピン

上記を参照し各コンフィギュレーションモードを設定してください。

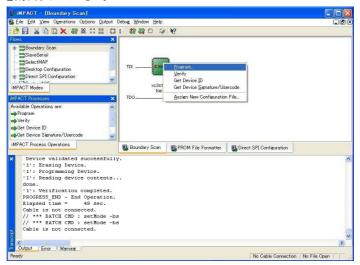
S5、6、7: SPI コンフィギュレーションモード

VS[2..0]予約

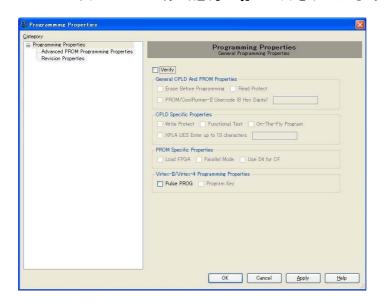
S8: ターゲット設定

OFF: JTAG(FPGA) ON: SPI-PROM

6. FPGA へのコンフィギュレーション

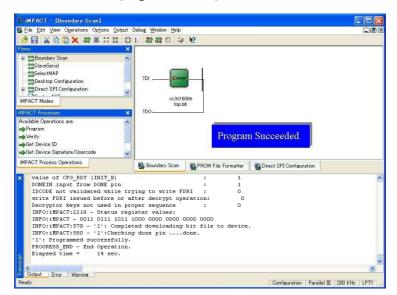

6.1. ディップスイッチ (SW1) の設定

FPGA にコンフィギュレーションする際、ディップスイッチの設定が必要です。 ディップスイッチを下記のように設定してください。

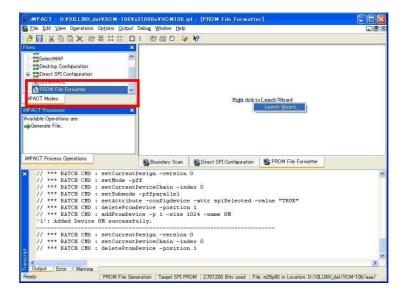

SW1

	1	2	3	4	5	6	7	8
ON								
OFF								

▼ FPGA へのコンフィギュレーションは iMPACT により行います。 iMPACT を起動し**[File]-[Initialize Chain]**をクリックすると、FPGA が認識されます。FPGA に対して bit ファイルを割り付けてください。

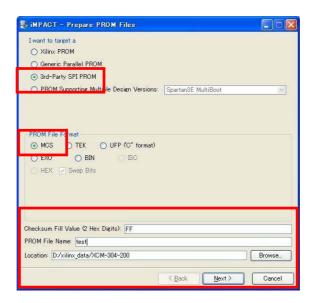

▼ デバイスのアイコン上で右クリックをし、[Program...]をクリックしてください。 FPGA へのコンフィギュレーションの際は、通常[Verify]のチェックを外してください。

8


▼ 書き込みが成功すると、[Program Succeeded]と表記されます。

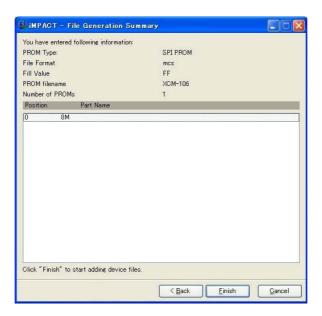
7. SPI-PROM への書き込み

7.1. MCS データ作成方法


▼ 下図 赤枠[PROM File Formatter]上でダブルクリックしてください。

9

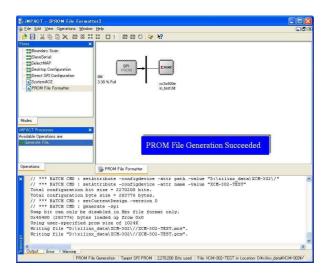
▼ 次に、下図のようにチェックを入れ、File NameとLocation(保存先)を指定しMextンをクリックしてください。


▼ 次に、XCM-304 は M25P80 を使用しているので、Select SPI PROM Density(bits)は **8M** を選択してください。

下図のようになれば Next>をクリックします。

▼ 次に、<u>F</u>inish をクリックしてください。

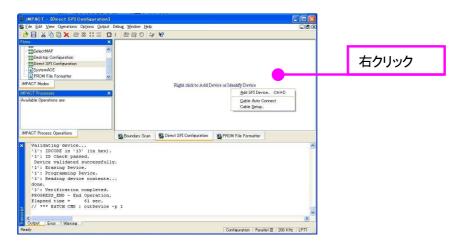
▼ 次に、下図ダイアログが表示されますので **OK** をクリックし、bit ファイルを指定してください。



▼ 次に、作成した bit ファイルを割り当てます。

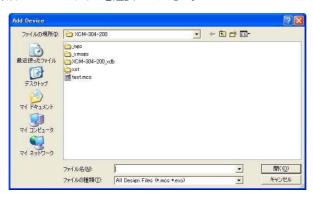
▼ 次に、iMPACT Processes のタブにある[Generate File...]をダブルクリックしてください。 下記のように PROM File [Generation Succeeded]と表記されれば完了です。

7.2. ディップスイッチ(SW1)設定

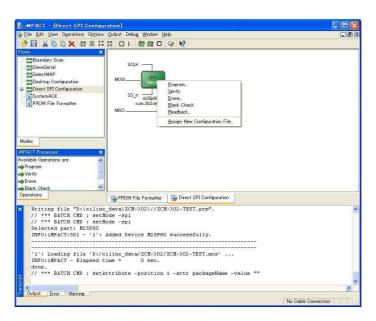

SPI-PROMに書き込む際、ディップスイッチの設定が必要です。 ディップスイッチを下記のように設定してください。(S4-S7 は設定不要) SW1

	S1	S2	S3	S4	S5	S6	S7	S8
ON								
OFF								

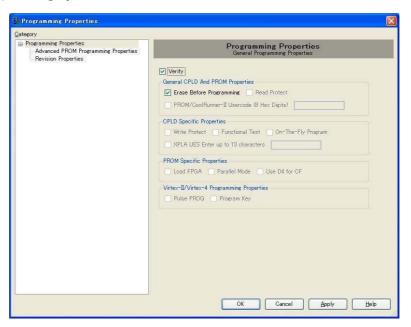
7.3. SPI-PROM へのデータ書き込み方法


SPI-PROM へのデータ書込みは iMPACT により行います。

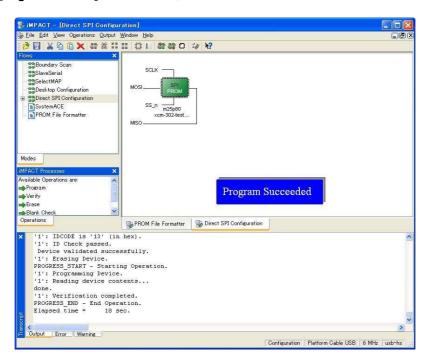
▼ iMPACT を起動し[Direct SPI Configuration]のタブをクリックしてください。 右クリックし [Add SPI Device]をクリックしてください。


▼ 6.1 項で作成した MCS ファイルを選択してください。

▼ 次に SPI-PROM の種類を選択してください。 XCM-302 では ST マイクロエレクトロニクスの M25P80 を使用しています。 M25P80 を選択してください。



▼ 下図のようになれば SPI-PROM に MCS ファイルを割り当てることができました。 SPI-PROM 上で右クリックし[Program...]をクリックしてください。

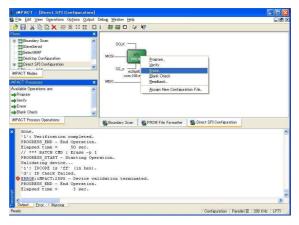


▼ SPI-PROM ヘデータ書き込み時は[Verify][Erase Before Programming]にチェックをいれ OK を クリックしてください。

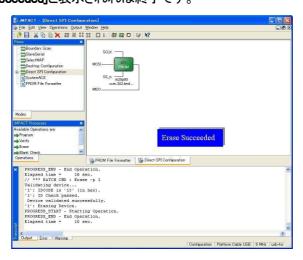
▼ [Program Succeeded]が表示されれば終了です。

7.4. SPI-PROM からコンフィギュレーション

SPI-PROM からコンフィギュレーションする際、ディップスイッチの設定が必要です。 ディップスイッチを下記のように設定し、電源を入れると SPI-PROM から FPGA にコンフィギュレーションされます。


	S1	S2	S3	S4	S5	S6	S7	S8
ON								
OFF								

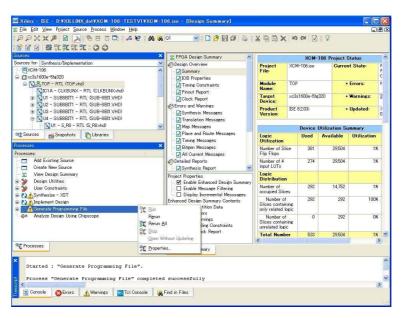
7.5. SPI-PROM データの消去方法

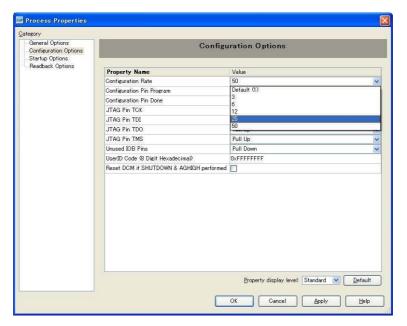

SPI-PROMに書き込む際ディップスイッチの設定が必要です。 ディップスイッチを下記のように設定してください。(S5-S7 は設定不要)

	S1	S2	S3	S4	S5	S6	S7	S8
ON								
OFF								

▼ SPI-PROM 上で右クリックし、[Erase...]をクリックしてください。

▼ [Erase Succeeded]と表示されれば終了です。




8. Configuration Rate の設定

XCM-304 では **Configuration Rate** の設定が可能です。 以下に **Configuration Rate** の設定方法を示します。

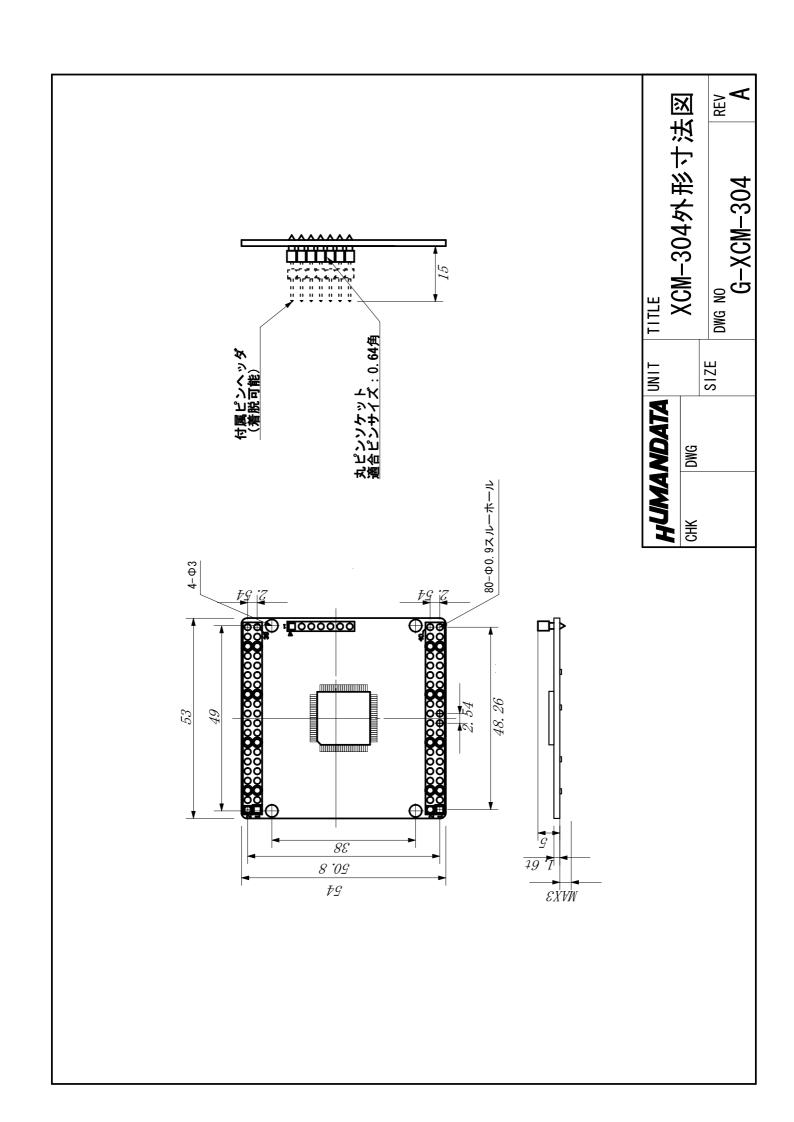
▼ ISE の Processes のタブにある[Generate Programming File]で右クリックし、
[Properties...]をクリックしてください。

▼ [Configuration Options]の[Configuration Rate]を 25 に設定し [OK]をクリックしてください。

9. XCM-304 参考資料について

追加資料や参考資料がつくられた場合は

製品サポートページ


http://www.hdl.co.jp/support_c.html

にデータをアップロードすることにいたします。

10. 付属資料

- 1. 基板回路図(別紙)
- 2. 外形図

Spartan3AN ブレッドボード (セミカードサイズ) XCM-304-200A

2009/02/18 初版

有限会社ヒューマンデータ

〒567-0034 大阪府茨木市中穂積1-2-10 ジブラルタ生命茨木ビル TEL 072-620-2002 FAX 072-620-2003 URL http://www.hdl.co.jp/