

ヒューマンデータ

はじめに	1
ご注意	1
改訂記録	2
1. 製品の内容について	2
2. 仕様	2
3.製品説明	3
3.1. 各部の名称	3
3.2. プロック図	4
3.3. 開発環境	4
3.4. 電源入力	5
3.5. JTAG コネクタ	5
4. FPGA ピン割付表	6
4.1. CNA	6
4.2. CNB	7
4.3. CLK	8
4.4. 汎用 LED	8
4.5. 汎用 SW	8
4.6. その他	8
5. ディップスイッチの説明	9
6. FPGA へのコンフィギュレーション	10
6.1. JTAG から FPGA ヘコンフィギュレーション	.10
7.インシステムフラッシュメモリへの書込み	10
7.1. インシステム Flash プログラミングファイルの作成	.10
7.2 インシステム Flash への書込み	.11
7.3. インシステム Flash の Erase	.11
8.XCM-303 参考資料について	11
9. 付属資料	11

はじめに

この度は、Spartan3AN ブレッドボード / XCM-303をお買い上げいただきまして誠に ありがとうございます。

XCM-303 は、XILINX の高性能 FPGA Spartan3AN を用いた評価用ボードで、電源 回路、クロック回路、コンフィギュレーション回路などを装備した、使いやすいボードに なっています。

どうぞご活用ください。

ご注意

\bigcirc	1	本製品には、民生用の一般電子部品が使用されています。 宇宙、航空、医療、原子力等、各種安全装置など人命、事故にかかわる 特別な品質、信頼性が要求される用途でのご使用はご遠慮ください。
V	2	水中、高湿度の場所での使用はご遠慮ください。
禁止	3	腐食性ガス、可燃性ガス等引火性のガスのあるところでの
		使用はご遠慮ください。
	4	基板表面に他の金属が接触した状態で電源を入れないで〈ださい。
	5	定格を越える電源を加えないでください。

6	本書の内容は、改良のため将来予告なしに変更することがありますので、 ご了承願います。
7	本書の内容については万全を期して作成しましたが、万一誤りなど、お気づ きの点がございましたら、ご連絡をお願いいたします。
8	本製品の運用の結果につきましては、7.項にかかわらず当社は責任を負 いかねますので、ご了承願います。
9	本書に記載されている使用と異なる使用をされ、あるいは本書に記載され ていない使用をされた場合の結果については、当社は責任を負いません。
10	本書および、回路図、サンプル回路などを無断で複写、引用、配布すること はお断りいたします。
11	発煙や発火、異常な発熱があった場合はすぐに電源を切ってください。
12	ノイズの多い環境での動作は保障しかねますのでご了承ください。
13	静電気にご注意ください。

改訂記録

版	日付	改訂内容
第3版	2009/11/11	6.FPGA へのコンフィギュレーションを追加 搭載 FPGA 誤植修正

1.製品の内容について

本パッケージには、以下のものが含まれています。万一、不足などがございましたら、 弊社宛にご連絡ください。

FPGA ブレッドボード XCM-303	1
付属品	1
マニュアル(本書)	1*
ユーザ登録はがき	1*
* オーダー毎に各1部の場合があります。	(ご要望により追加請求できます)

2.仕様

製品型番	XCM-303-50AN				
搭載 FPGA	XC3S50AN-4TQG144C				
電源	DC 3.3V				
消費電流	N/A (詳細は FPGA データシートご参照)				
外形寸法	54 × 53 [mm]				
質量	約 15 [g]				
ユーザー1/0	56 本				
1/0 コネクタ	40 ピンスルーホール 0.9[mm]x2 組 2.54mm ピッチ				
プリント基板	ガラスエポキシ 4 層基板 1.6t				
クロック	オンボード 50MHz				
コンフィギュレーション用リセット回路	内蔵 (240ms TYP)				
JTAG コネクタ	SIL7 ピン ピンヘッダ 2.54mm ピッチ				
ステータス LED	3個 (POWER, DONE, AWAKE)				
付届品	SIL7 ピンヘッダ(本体に取付け済み) 1 個 *				
	DIL20 ピンヘッダ 2個 *				

* 互換品と変更になる場合がございます

3. 製品説明

3.1. 各部の名称

部品面

3.2. ブロック図

3.3. 開発環境

FPGAの内部回路設計には、回路図エディタやHDL入力ツール、論理合成ツールが必要です。これらの開発ツールは、XILINX社が無償配布するISEにて可能です。使用する際には、インターネットによるライセンス登録が必要となります。

3.4. 電源入力

本ボードは、DC <mark>3.3</mark>V単一電源で動作します。

内部で必要な、1.2V はオンボードのレギュレータにより生成されます。 外部から供給する 3.3V 電源は充分安定して、充分な余裕のあるものをご用意ください。

電源は、CNA、CNB から供給してください。CNA は BANK-A、CNB は BANK-B の VCCIO となっております。適切な電源を供給してください。

いずれも 3.3V を超えることはできません。

詳しくは FPGA のデータシート、回路図などを参照してください。また電源の立ち上が りは単調増加である必要があります。良質の電源を使用するようにしてください。

3.5. JTAG コネクタ

FPGA へのコンフィギュレーション及び 内部マスタ SPI Flash モードに使用します。 ピン配置は次表のとおりです。

CN1

信号名	方向	ピン番号
GND	I/O	1
TCK	IN	2
TDO	OUT	3
TMS	IN	4
VCC(3.3V)	OUT(POW)	5
TDI	IN	6
GND	I/O	7

弊社製ダウンロードケーブル XC3や XILINX 社の純正ケーブルなどを用いることが できます。

使用例

4. FPGA ピン割付表

4.1. CNA

BANK	NET LABEL	FPGA ピン#	コネク	タピン#	FPGA ピン#	NET LABEL	BANK
		3.3V	1	2	3.3V		
		電源予約	3	4	電源予約		
		GND	5	6	GND		
Α	IOA0	3	7	8	4	IOA1	А
Α	IOA2	5	9	10	6	IOA3	А
Α	IOA4	7	11	12	8	IOA5	А
А	IOA6	10	13	14	11	IOA7	А
		GND	15	16	GND		
Α	IOA8	12	17	18	13	IOA9	А
Α	IOA10	15	19	20	16	IOA11	А
А	IOA12	18	21	22	19	IOA13	А
Α	IOA14	20	23	24	21	IOA15	А
		GND	25	26	GND		
Α	IOA16	24	27	28	25	IOA17	А
Α	IOA18	27	29	30	28	IOA19	А
Α	IOA20	29	31	32	30	IOA21	А
Α	IOA22	31	33	34	32	IOA23	А
		GND	35	36	GND		
А	IOA24	46	37	38	47	IOA25	А
A	IOA26	48	39	40	49	IOA27	А

4.2. CNB

BANK	NET LABEL	FPGA ピン#	コネク	タピン#	FPGA ピン#	NET LABEL	BANK
		VIO(B) *1	1	2	VIO(B) *1		
		電源予約	3	4	電源予約		
		GND	5	6	GND		
В	IOB0	141	7	8	139	IOB1	В
В	IOB2	138	9	10	135	IOB3	В
В	IOB4	134	11	12	132	IOB5	В
В	IOB6	131	13	14	130	IOB7	В
		GND	15	16	GND		
В	IOB8	129	17	18	127	IOB9	В
В	IOB10	125	19	20	121	IOB11	В
В	IOB12	120	21	22	117	IOB13	В
В	IOB14	116	23	24	115	IOB15	В
		GND	25	26	GND		
В	IOB16	114	27	28	113	IOB17	В
В	IOB18	112	29	30	111	IOB19	В
В	IOB20	110	31	32	105	IOB21	В
В	IOB22	104	33	34	103	IOB23	В
		GND	35	36	GND		
В	IOB24	101	37	38	102	IOB25	В
В	IOB26	98	39	40	99	IOB27	В

*1 VIO(B)は通常 3.3V。 変更時は R5 を取外す。

4.3. オンボードクロック

周波数	NET LABEL	FPGA ピン#
50MHz	CLK0	57,59
	CLK1	124,126

4.4. 汎用 LED

LED	NET LABEL	FPGA ピン#
LED2	ULED2	93
LED3	ULED3	96

4.5. 汎用 SW

SW	NET LABEL	FPGA ピン#
SW1-1	PSW1	33
SW2	PSW2	35

4.6. シリアル I/F (CN2)

NET LABEL	FPGA ピン#			
TXDB	60			
RXDB	58			

5. ディップスイッチの説明

XCM-303 のディップスイッチ(SW1)は以下のように割り付けられています。 SW を **ON** で **Low** に固定されます。

番号	1	2	3	4	5	6	7	8
記号	PSW1	X_M0	X_M1	X_M2	VS2	VS1	VS0	X_SUSPEND
出荷時	OFF	OFF	OFF	OFF	OFF	OFF	OFF	ON
説明	汎用 SW	モードセレクトピン		SPI コンフィギュレーションモード			SUSPEND モード設定	

	`				
	内部マスタ SPI	マスタシリアル	マスタ SPI	BPI UP	JTAG
M[02]モードピンの設定	<1:1:0>	< 0:0:0>	< 1:0:0>	< 0 : 1 : 0 >	<1:0:1>

1: **汎用** SW

2、3、4:モードセレクトピン

上記を参照し各コンフィギュレーションモードを設定してください。

- 5、6、7: SPI コンフィギュレーションモード 詳しくは Spartan3-AN のデータシートをご覧ください。
- 8:SUSPEND モード設定

詳しくは Spartan3-AN のデータシートをご覧ください。

6. FPGA へのコンフィギュレーション

FPGA のコンフィギュレーションは、JTAG または、コンフィギュレーションデバイ スから行われます。JTAG から FPGA へのコンフィギュレーションには、ダウンロード ケープルを使用します。

FPGA のコンフィギュレーションモードピンを [JTAG モード] に設定してください。

コンフィギュレーションデバイスからコンフィギュレーションするには、FPGAのコ ンフィギュレーションモードピンを [マスタ SPI モード] に設定してください。

6.1. JTAG から FPGA ヘコンフィギュレーション

ディップスイッチを下記のように設定してください。

	1	2	3	4	5	6	7	8
ON								
OFF								

- ISE の Processes タブにある [Configure Target Device] を展開して [Manage Configuration Project] をダブルクリックします。
 (ダイアログが出ますのがそのまま [Finish] をクリック)
- 2. bit ファイルを指定します。
- 3. [Device Programming Properties] ダイアログにて [Verify] にチェックが 無いことを確認します。
- 4. デバイスのアイコンをクリックし選択し [Operations] -> [Program] をク リックします。
- 5. [Program Succeeded] と表示でコンフィギュレーションが終了です。 コンフィギュレーション完了すると基板上の [DONE LED] が点灯します。

7.インシステムフラッシュメモリへの書込み

7.1. インシステム Flash プログラミングファイルの作成

この手順は、iMPACTを使用して、単体のビットストリームをインシステムFlashにプログラムする場合は不要です。

- 1. [PROM File Formatter]をダブルクリックしてください。
- 2. [Configuration Modes] タブで [PROM File Formatter] をダブルクリックします。 [iMPACT - Prepare PROM Files] ダイアログで [PROM Supporting Multiple Design Versions]にチェックし [Spartan3AN]を選択する。
- [PROM File Format MCS] にチェックし[PROM File Name] で
 任意の名前を付け、[Location] で保存先を指定し [Next] をクリックします
- 4. 次に[xc3 s 50an]を選択し<u>N</u>ext>をクリックします。
- 次に[Bitstream1]にチェックを入れ、<u>N</u>ext>をクリックします。 (ダイアログが出ますのがそのまま [Finish] をクリック)
- 6. [Add device] ダイアログにて[bit file]を選択します。
- 7. iMPACT Processes のタブにある[Generate File...]をダブルクリック [PROM File Generation Succeeded]と表記されれば完了です。

7.2 インシステム Flash への書込み

XCM-303 ではインシステム Flash が使用可能です。 インシステム Flash に書込みする場合、ディップスイッチの設定が必要です。ディップス イッチを下記のように設定し iMPACT から書込みを行ってください。

	1	2	3	4	5	6	7	8
ON								
OFF								

- 1. iMPACT を起動し[File]-[Initialize Chain]をクリックすると、FPGA が認識されます。
- 2. FPGA に対して 6.1 項で作成した mcs ファイルを割り付けてください。
- 3. デバイスのアイコン上で右クリックをし、[Program...]をクリックします。
- 4. [Program Succeeded] と表示でコンフィギュレーションデバイスに書き込み完了 です。

7.3. インシステム Flash の Erase

- 1. [Operations] -> [Erase] をクリックします。
- 2. [Erase Succeeded] と表示で完了です。

8. XCM-303 参考資料について

追加資料や参考資料がつくられた場合は 製品サポートページ http://www.hdl.co.jp/support_c.html にデータをアップロードすることにいたします。

9. 付属資料

- 1. 基板回路図(別紙)
- 2. 基板外形図

Spartan3AN ブレッドボード (セミカードサイズ) XCM-303-50AN

2008/06/05 初版 2009/03/13 第2版 2009/11/11 第3版

有限会社ヒューマンデータ

〒567-0034 大阪府茨木市中穂積1-2-10 ジブラルタ生命茨木ビル TEL 072-620-2002 FAX 072-620-2003 URL http://www.hdl.co.jp/