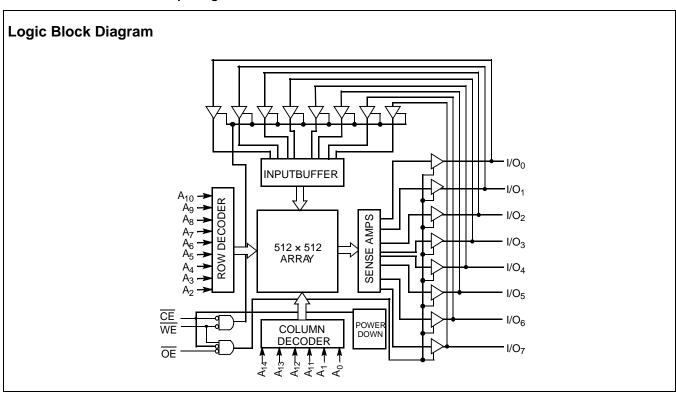


256K (32K x 8) Static RAM

Features


- Temperature Ranges
 - Commercial: 0°C to 70°C
 Industrial: -40°C to 85°C
 Automotive: -40°C to 125°C
- Speed: 70 ns and 100 ns
- Low voltage range:
 - CY62256V (2.7V-3.6V)
 - CY62256V25 (2.3V-2.7V)
- · Low active power and standby power
- Easy memory expansion with CE and OE features
- · TTL-compatible inputs and outputs
- Automatic power-down when deselected
- · CMOS for optimum speed/power
- Package available in a standard 450-mil-wide (300-mil body width) 28-lead narrow SOIC, 28-lead TSOP-1, and reverse 28-lead TSOP-1 package
- Also available in Lead-Free packages

Functional Description[1]

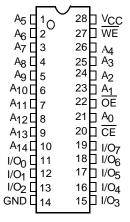
The CY62256V family is composed of two high-performance CMOS static RAM's organized as 32K words by 8 bits. Easy memory expansion is provided by an active LOW chip enable $(\overline{\text{CE}})$ and active LOW output enable $(\overline{\text{OE}})$ and three-state drivers. These devices have an automatic power-down feature, reducing the power consumption by over 99% when deselected.

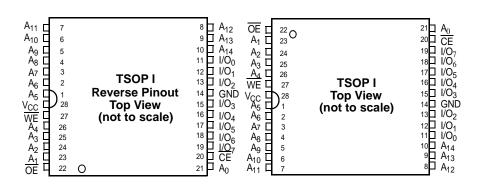
An active LOW write enable signal (\overline{WE}) controls the writing/reading operation of the memory. When \overline{CE} and \overline{WE} inputs are both LOW, data on the eight data input/output pins (I/O_0) through I/O_7 is written into the memory location addressed by the address present on the address pins (A_0) through A_{14} . Reading the device is accomplished by selecting the device and enabling the outputs, \overline{CE} and \overline{OE} active LOW, while \overline{WE} remains inactive or HIGH. Under these conditions, the contents of the location addressed by the information on address pins are present on the eight data input/output pins.

The input/output pins remain in a high-impedance state unless the chip is selected, outputs are enabled, and write enable (WE) is HIGH.

Note:

1. For best practice recommendations, please refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com.




Product Portfolio

						Power Dissipation				
		Vo	_{CC} Range ((V)	Speed	Operating	j, I _{CC} (mA)	Standby,	I _{SB2} (μA)	
Product	Range	Min.	Typ. ^[2]	Max.	(ns)	Typ. ^[2]	Max.	Typ. ^[2]	Max.	
CY62256VLL	Com'l / Ind'l	2.7	3.0	3.6	70	11	30	0.1	5	
CY62256VLL	Automotive	2.7	3.0	3.6	70	11	30	0.1	130	
CY62256V25LL	Com'l	2.3	2.5	2.7	100	9	15	0.1	4	

Pin Configurations

Pin Definitions

Pin Number	Туре	Description
1–10, 21, 23–26	Input	A ₀ -A ₁₄ . Address Inputs
11–13, 15–19	Input/Output	I/O ₀ -I/O ₇ . Data lines. Used as input or output lines depending on operation
27	Input/Control	WE. When selected LOW, a WRITE is conducted. When selected HIGH, a READ is conducted
20	Input/Control	CE. When LOW, selects the chip. When HIGH, deselects the chip
22	Input/Control	OE . Output Enable. Controls the direction of the I/O pins. When LOW, the I/O pins behave as outputs. When deasserted HIGH, I/O pins are three-stated, and act as input data pins
14	Ground	GND. Ground for the device
28	Power Supply	V _{CC} . Power supply for the device

Note

^{2.} Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC} Typ., T_A = 25°C, and t_{AA} = 70 ns.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied......-55°C to +125°C Supply Voltage to Ground Potential DC Voltage Applied to Outputs in High-Z State $^{[3]}$ -0.5V to $\rm V_{CC}$ + 0.5V DC Input Voltage^[3].....-0.5V to V_{CC} + 0.5V Output Current into Outputs (LOW)20 mA

Static Discharge Voltage	> 2001V
(per MIL-STD-883, Method 3015)	
Latch-up Current	> 200 mA

Operating Range

Device	Range	Ambient Temperature (T _A) ^[4]	v _{cc}
CY62256V	Commercial	0°C to +70°C	2.7V to 3.6V
	Industrial	-40°C to +85°C	
	Automotive	–40°C to +125°C	
CY62256V25	Commercial	0°C to +70°C	2.3V to 2.7V

Electrical Characteristics Over the Operating Range

				C)	62256V	-70	
Parameter	Description	Test Conditions		Min.	Typ. ^[2]	Max.	Unit
V _{OH}	Output HIGH Voltage	I _{OH} = -1.0 mA	$V_{CC} = 2.7V$	2.4			V
V _{OL}	Output LOW Voltage	I _{OL} = 2.1 mA	$V_{CC} = 2.7V$			0.4	V
V _{IH}	Input HIGH Voltage			2.2		V _{CC} +0.3V	V
V _{IL}	Input Leakage Voltage			-0.5		0.8	V
I _{IX}	Input Leakage Current	$GND \le V_{IN} \le V_{CC}$	Com'l, Ind'l	-1		+1	μΑ
			Automotive	-10		+10	μΑ
l _{OZ}	Output Leakage Current	$GND \le V_{IN} \le V_{CC}$, Output Disabled	Com'l, Ind'l	-1		+1	μΑ
			Automotive	-10		+10	μΑ
I _{CC}	V _{CC} Operating Supply Current	$V_{CC} = 3.6V, I_{OUT} = 0 \text{ mA},$ $f = f_{MAX} = 1/t_{RC}$	All ranges		11	30	mA
I _{SB1}	Automatic CE Power-down Current— TTL Inputs	$V_{CC} = 3.6V, \overline{CE} \ge V_{IH},$ $V_{IN} \ge V_{IH} \text{ or } V_{IN} \le V_{IL}, f = f_{MAX}$	All ranges		100	300	μА
I _{SB2}	Automatic CE Power-down	$V_{CC} = 3.6V, \overline{CE} \ge V_{CC} - 0.3V$	Com'l		0.1	5	
	Current— CMOS Inputs	$V_{IN} \ge V_{CC} - 0.3V \text{ or } V_{IN} \le 0.3V, f = 0$	Ind'I			10	
			Automotive			130	

Electrical Characteristics Over the Operating Range

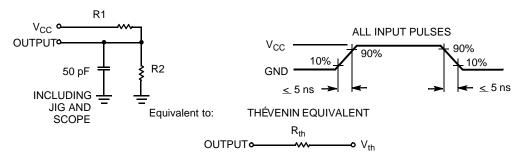
				CY6	CY62256V25-100		
Parameter	Description	Test Conditions		Min.	Typ . ^[2]	Max.	Unit
V _{OH}	Output HIGH Voltage	$I_{OH} = -0.1 \text{ mA}$	$V_{CC} = 2.3V$	2			V
V_{OL}	Output LOW Voltage	I _{OL} = 0.1 mA	$V_{CC} = 2.3V$			0.4	V
V _{IH}	Input HIGH Voltage			1.7		V _{CC} + 0.3V	V
V _{IL}	Input LOW Voltage			-0.3		0.7	V
I _{IX}	Input Leakage Current	$GND \leq V_{IN} \leq V_{CC}$		-1		+1	μА
I _{OZ}	Output Leakage Current	GND \leq V _{IN} \leq V _{CC} , Output Disabled		-1		+1	μΑ
I _{CC}	V _{CC} Operating Supply Current	$V_{CC} = 2.7V, I_{OUT} = 0 \text{ mA}, f = f_{MAX}$ = 1/t _{RC}	Com'l, Ind'l		9	15	mA

Notes:

^{3.} $V_{\rm IL}$ (min.) = -2.0V for pulse durations of less than 20 ns. 4. $T_{\rm A}$ is the "Instant-On" case temperature

Electrical Characteristics Over the Operating Range (continued)

				CY6	2256V25	-100	
Parameter	Description	Test Conditions		Min.	Typ. ^[2]	Max.	Unit
I _{SB1}	Automatic CE Power-down Current— TTL Inputs	$V_{CC} = 2.7V, \overline{CE} \ge V_{IH},$ $V_{IN} \ge V_{IH} \text{ or } V_{IN} \le V_{IL}, f = f_{MAX}$	Com'l, Ind'l		75	225	μΑ
I _{SB2}	Automatic CE Power-down	$V_{CC} = 2.7V, \overline{CE} \ge V_{CC} - 0.3V$	Com'l		0.1	4	
	Current — CMOS Inputs	$V_{IN} \ge V_{CC} - 0.3V \text{ or } V_{IN} \le 0.3V, f = 0$	Ind'I			8	


Capacitance^[5]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25$ °C, $f = 1$ MHz,	6	pF
C _{OUT}	Output Capacitance	$V_{CC} = 3.0V$	8	pF

Thermal Resistance

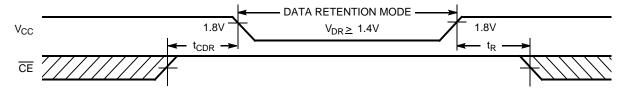
Parameter	Description	Test Conditions	SOIC	TSOPI	RTSOPI	Unit
Θ_{JA}	Thermal Resistance (Junction to Ambient) ^[6]	Still Air, soldered on a 3 x 4.5 inch, four-layer printed circuit board	68.45	87.62	87.62	°C/W
Θ ^{JC}	Thermal Resistance (Junction to Case) ^[5]		26.94	23.73	23.73	°C/W

AC Test Loads and Waveforms

Parameter	3.3V	2.5V	Units
R1	1100	16600	Ohms
R2	1500	15400	Ohms
RTH	645	8000	Ohms
VTH	1.750	1.20	Volts

Note:

Document #: 38-05057 Rev. *E


^{5.} Tested initially and after any design or process changes that may affect these parameters.

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions ^[6]		Min.	Typ. ^[2]	Max.	Unit
V_{DR}	V _{CC} for Data Retention			1.4			V
I _{CCDR}	Data Retention Current	$V_{CC} = 1.6V, \overline{CE} \ge V_{CC} - 0.3V,$ $V_{IN} \ge V_{CC} - 0.3V \text{ or } V_{IN} \le 0.3V$	Com'l		0.1	3	μΑ
		$V_{IN} \ge V_{CC} - 0.3V$ or $V_{IN} \le 0.3V$	Ind'I			6	
			Auto			50	
t _{CDR} ^[6]	Chip Deselect to Data Retention Time			0			ns
t _R ^[6]	Operation Recovery Time			t _{RC}			ns

Data Retention Waveform

Note:6. No input may exceed V_{CC} + 0.3V.

Switching Characteristics Over the Operating Range^[7]

		CY622	256V-70	CY6225	6V25-100	
Parameter	Description	Min.	Max.	Min.	Max.	Unit
Read Cycle	•	1	•	•		
t _{RC}	Read Cycle Time	70		100		ns
t _{AA}	Address to Data Valid		70		100	ns
t _{OHA}	Data Hold from Address Change	10		10		ns
t _{ACE}	CE LOW to Data Valid		70		100	ns
t _{DOE}	OE LOW to Data Valid		35		75	ns
t _{LZOE}	OE LOW to Low-Z ^[8]	5		5		ns
t _{HZOE}	OE HIGH to High-Z ^[8, 9]		25		50	ns
t _{LZCE}	CE LOW to Low-Z ^[8]	10		10		ns
t _{HZCE}	CE HIGH to High-Z ^[8, 9]		25		50	ns
t _{PU}	CE LOW to Power-up	0		0		ns
t _{PD}	CE HIGH to Power-down		70		100	ns
Write Cycle ^[10, 11]						
t _{WC}	Write Cycle Time	70		100		ns
t _{SCE}	CE LOW to Write End	60		90		ns
t _{AW}	Address Set-up to Write End	60		90		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	50		80		ns
t _{SD}	Data Set-up to Write End	30		60		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{HZWE}	WE LOW to High-Z ^[8, 9]		25		50	ns
t _{LZWE}	WE HIGH to Low-Z ^[8]	10		10		ns

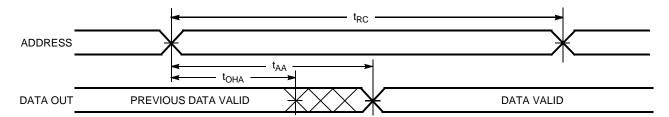
Notes:

Notes:

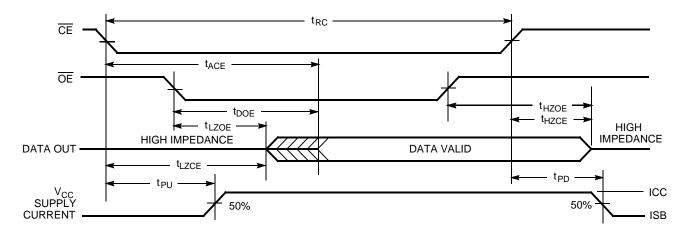
7. Test conditions assume signal transition time of 5 ns or less timing reference levels of V_{CC}/2, input pulse levels of 0 to V_{CC}, and output loading of the specified l_{OL}/l_{OH} and 100-pF load capacitance.

8. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} for any given device.

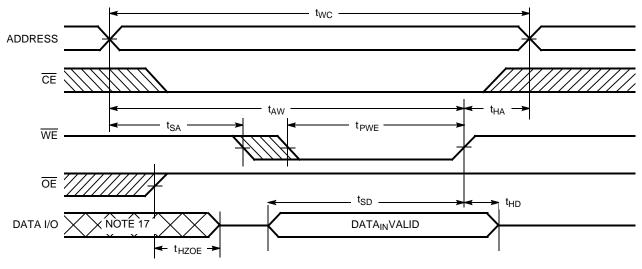
9. t_{HZOE}, t_{HZCE}, and t_{HZWE} are specified with C_L = 5 pF as in (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.


10. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.

11. The minimum write cycle time for write cycle #3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.



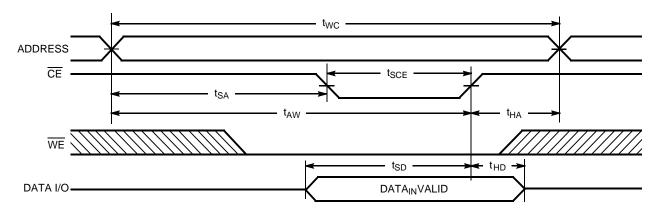
Switching Waveforms


Read Cycle No. 1^[12, 13]

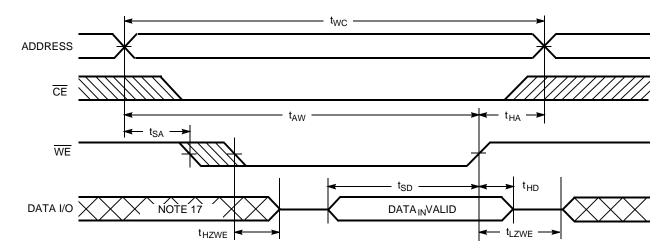
Read Cycle No. 2^[13, 14]

Write Cycle No. 1 (WE Controlled)[10, 15, 16]

Notes:

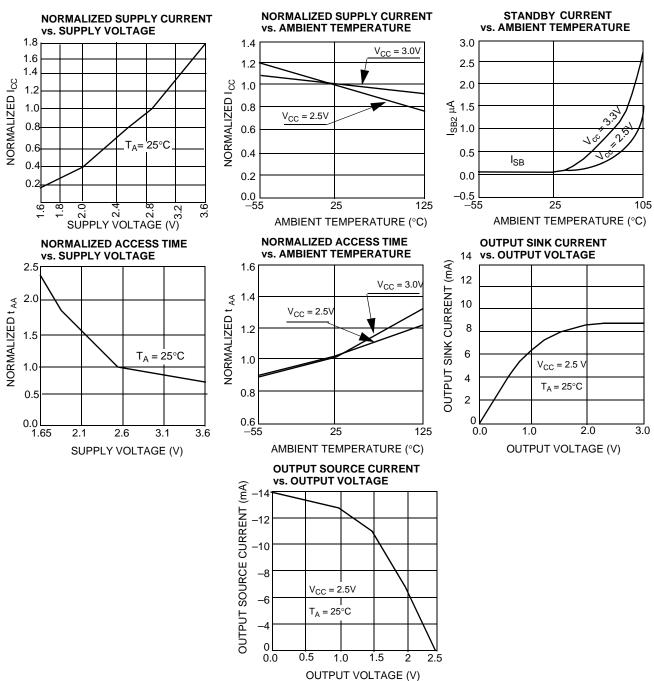

- 12. <u>Device</u> is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$.
- 13. WE is HIGH for read cycle.

- 13. We is Filed for feat cycle.
 14. Address valid prior to or coincident with CE transition LOW.
 15. Data I/O is high impedance if OE = V_{III}.
 16. If CE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.
- 17. During this period, the I/Os are in output state and input signals should not be applied.

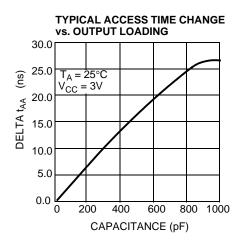


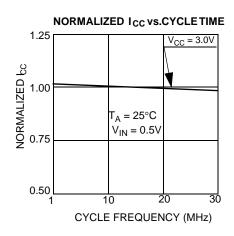
Switching Waveforms (continued)

Write Cycle No. 2 (CE Controlled)[10, 15, 16]



Write Cycle No. 3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW)[11, 16]

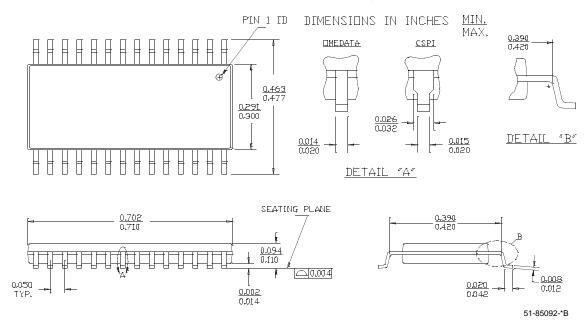



Typical DC and AC Characteristics

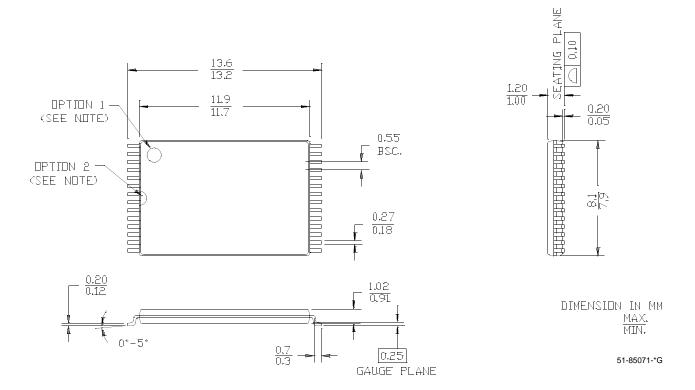
Typical DC and AC Characteristics (continued)

Truth Table

CE	WE	OE	Inputs/Outputs	Mode	Power
Н	Х	Х	High-Z	Deselect/Power-down	Standby (I _{SB})
L	Н	L	Data Out	Read	Active (I _{CC})
L	L	Х	Data In	Write	Active (I _{CC})
L	Н	Н	High-Z	Deselect, Output Disabled	Active (I _{CC})


Ordering Information

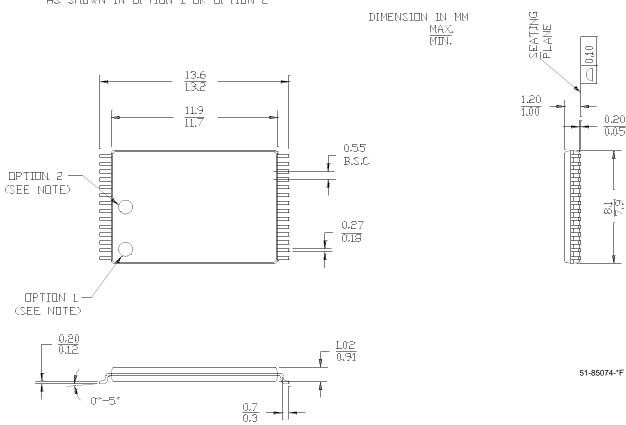
Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
70	CY62256VLL-70SNC	SN28	28-lead (300-mil Narrow Body) Narrow SOIC	Commercial
	CY62256VLL-70SNXC		28-lead (300-mil Narrow Body) Narrow SOIC (Pb-Free)	
	CY62256VLL-70ZC	Z28	28-lead Thin Small Outline Package	Commercial
	CY62256VLL-70ZXC		28-lead Thin Small Outline Package (Pb-Free)	
	CY62256VLL-70ZI		28-lead Thin Small Outline Package	Industrial
	CY62256VLL-70ZXI		28-lead Thin Small Outline Package (Pb-Free)	
	CY62256VLL -70SNI	SN28	28-lead (300-mil Narrow Body) Narrow SOIC	
	CY62256VLL-70SNXI		28-lead (300-mil Narrow Body) Narrow SOIC (Pb-Free)	
	CY62256VLL-70ZRI	ZR28	28-lead Reverse Thin Small Outline Package	
	CY62256VLL-70ZRXI		28-lead Reverse Thin Small Outline Package (Pb-Free)	
	CY62256VLL-70SNE	SN28	28-lead (300-mil Narrow Body) Narrow SOIC	Automotive
	CY62256VLL-70SNXE	SN28	28-lead (300-mil Narrow Body) Narrow SOIC (Pb-Free)	
	CY62256VLL-70ZE	Z28	28-lead Thin Small Outline Package	
	CY62256VLL-70ZXE	Z28	28-lead Thin Small Outline Package (Pb-Free)	
	CY62256VLL-70ZRE	ZR28	28-lead Reverse Thin Small Outline Package	
	CY62256VLL-70ZRXE	ZR28	28-lead Reverse Thin Small Outline Package (Pb-Free)	
100	CY62256V25LL-100ZC	Z28	28-lead Thin Small Outline Package	Commercial


Package Diagrams

28-lead (300-mil) SNC (Narrow Body) SN28

28-lead Thin Small Outline Package Type 1 (8 x 13.4 mm) Z28

NOTE: ORIENTATION I.D MAY BE LOCATED EITHER AS SHOWN IN OPTION 1 OR OPTION 2



Package Diagrams (continued)

28-lead Reverse Type 1 Thin Small Outline Package (8 x 13.4 mm) ZR28

NOTE: ORIENTATION I.D MAY BE LOCATED EITHER AS SHOWN IN OPTION 1 OR OPTION 2

All product and company names mentioned in this document are the trademarks of their respective holders.

Document History Page

Document Title: CY62256V 256K (32K x 8) Static RAM Document Number: 38-05057							
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change			
**	107248	09/10/01	SZV	Changed from spec number: 38-00519 to 38-05057			
*A	111445	11/01/01	MGN	Removed obsolete parts. Change to standard format			
*B	115229	05/23/02	GBI	Changed SN package diagram			
*C	116507	09/04/02	GBI	Added footnote 1 Clarified I_{CC} spec for $V_{CC(typ)} = 2.5V$			
*D	239134	See ECN	AJU	Added Automotive product information			
*E	344595	See ECN	SYT	Added Pb-Free packages on page# 10			